Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zi-Liang Wang ${ }^{\text {a* }}$ and Lin-Heng Wei ${ }^{\text {b }}$

${ }^{\text {a }}$ Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Environment and Planning, Henan University, Kaifeng 475001, People's Republic of China

Correspondence e-mail: zlwang@henu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.056$
$w R$ factor $=0.154$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4,4'-Bipyridinium disaccharinate dihydrate

The asymmetric unit of the title compound [systematic name: 4,4'-bipyridinium bis(2,3-dihydro-1,1,3-trioxo-1,2-benzothiazolate) dihydrate], $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{+} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, consists of one half of a $4,4^{\prime}$-bipyridinium cation, which has inversion symmetry, one saccharinate anion and one water molecule. These ions and molecules are further linked into a supramolecular structure by intermolecular hydrogen bonds.

Comment

Hydrogen bonds and intermolecular interactions are widely used in organic crystal engineering to design and synthesize one-, two- and three-dimensional supramolecular networks (Beatty, 2003). 4,4'-Bipyridine is an excellent synthon in preparing novel structures, owing to its rigidity and its ability to form strong hydrogen bonds or coordination bonds via its two N atoms. Many supramolecular architectures involving $4,4^{\prime}$-bipyridine have been reported (Lough et al., 2000). We report here the crystal structure of the title complex salt, (I), consisting of a complex cation, 4, 4^{\prime}-bipyridinium, two saccharinate (2,3-dihydrooxobenzisosulfonazolate) anions and two water molecules.

(I)

The asymmetric unit of (I) (Fig. 1) contains one half of a $4,4^{\prime}$-bipyridinium cation, one saccharinate anion and one water molecule. 4,4'-Bipyridine is protonated on both N atoms, as is evident from the increase in the internal angle [C8-N2-C12 increases from $115.45(19)^{\circ}$ in neutral 4,4bipyridine (Boag et al., 1999) to 121.1 (2) ${ }^{\circ}$ in (I)]. Such an increase in the internal angle has also been observed in many 4,4'-bipyridinium salts (Iyere et al., 2002). The 4,4'-bipyridinium cation lies on an inversion centre (Fig. 1). The saccharinate ion is essentially planar, with an r.m.s. deviation of 0.03 (1) \AA, and the bond geometry of the saccharinate ion is similar to those of reported complexes containing saccharinate as the counter-ion (Deng et al., 2000; Topcu et al., 2001; Yilmaz, Andac et al., 2001; Yilmaz, Topcu et al., 2001; Yilmaz, Yilmaz et al., 2001).

These ions and the water molecules are further linked together by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 1).
\qquad

Figure 1
The structure of (I), with the atomic numbering of the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by the symmetry code $(-x,-y,-z)$.

Experimental

All reagents were commercially available and of analytical grade. An ethanol solution (5 ml) of 4, 4^{\prime}-bipyridine ($1 \mathrm{mmol}, 0.156 \mathrm{~g}$) was added dropwise to a vigorously stirred solution of saccharin $(2.0 \mathrm{mmol}$, $0.376 \mathrm{~g})$ in distilled water $(15 \mathrm{ml})$. The solution was stirred for 15 min with the temperature maintained at less than 353 K and then filtered. After 7 d, colourless crystals of (I) were obtained from the filtrate.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O} & V=616.7(2) \AA^{3} \\
M_{r}=558.58 & Z=1 \\
\text { Triclinic, } P \overline{1} & D_{x}=1.504 \mathrm{Mg} \mathrm{~m}^{-3} \\
a=8.3215(19) \AA & \text { Mo } K \alpha \text { radiation } \\
b=8.538(2) \AA & \mu=0.27 \mathrm{~mm}^{-1} \\
c=9.629(2) \AA & T=292(2) \mathrm{K} \\
\alpha=94.368(4)^{\circ} & \text { Block, colourless } \\
\beta=102.874(4)^{\circ} & 0.20 \times 0.10 \times 0.10 \mathrm{~mm}
\end{array}
$$

$\gamma=110.281(4)^{\circ}$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 2001$)$
$\quad T_{\min }=0.947, T_{\max }=0.973$

Refinement

[^1]

Figure 2
A view of part of the crystal structure of (I), showing hydrogen-bonding interactions (dashed lines). H atoms not involved in these contacts have been omitted for clarity.

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1^{\prime} \cdots \mathrm{O}^{\mathrm{i}}$	${ }^{\mathrm{i}}$	$0.86(2)$	$1.81(2)$	$2.642(3)$
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 41 \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.86(3)$	$2.05(3)$	$2.913(3)$	$163(3)$
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.85(3)$	$2.00(3)$	$2.838(3)$	$168(3)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.56	$3.154(4)$	122
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{iv}}$	0.93	2.29	$3.095(4)$	144

Symmetry codes: (i) $x-1, y, z-1$; (ii) $x-1, y, z$; (iii) $-x+1,-y,-z+2$; (iv) $-x+1,-y,-z+1$.

All carbon-bound H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms bound to O and N were located in a difference map and refined, with their $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances restrained to 0.85 (2) and 0.86 (1) Å, respectively.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported by the Basic Research Foundation for Natural Science of Henan University (grant No. 04YBRW053).

References

Beatty, A. M. (2003). Coord. Chem. Rev. 246, 131-143.
Boag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. \& Thompson, J. R. (1999). Acta Cryst. C55, 672-674.

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Deng, R. M. K., Bilton, C., Dillon, K. B. \& Howard, J. A. K. (2000). Acta Cryst. C56, 142-145.
Iyere, P. A., Boadi, W. Y., Brooks, R. S., Atwood, D. \& Parkin, S. (2002). Acta Cryst. E58, o825-o827.
Lough, A. J., Wheatley, P. S., Ferguson, G. \& Glidewell, C. (2000). Acta Cryst. B56, 261-272.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

organic papers

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Topcu, Y., Andac, O., Yilmaz, V. T. \& Harrison, W. T. A. (2001). Acta Cryst. E57, m82-m84.
Yilmaz, V. T., Andac, O., Topcu, Y. \& Harrison, W. T. A. (2001). Acta Cryst. C57, 271-272.

Yilmaz, V. T., Topcu, Y., Yilmaz, F. \& Thoene, C. (2001). Polyhedron, 20, 32093217.

Yilmaz, V. T., Yilmaz, F., Topcu, Y., Andac, O. \& Guven, K. (2001). J. Mol. Struct. 560, 9-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
 $w R\left(F^{2}\right)=0.154$
 $S=1.03$
 2391 reflections
 184 parameters

